Q.P. Code: 16HS602

R16

Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B. Tech I Year I Semester Supplementary Examinations August-2021 ENGINEERING MATHEMATICS-I

(Common to all Branches)

Time: 3 hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

1 a Find the orthogonal trajectories of the family of curves $r^n = a^n \cos n\theta$.

6 M

b Solve $(D^2 - 4D + 4)y = 8e^{2x} \sin 2x$.

6 M

OR

2 a A body is originally at 80°C and cools down to 60°C in 20 min. If the 6 M temperature of the air is 40°C, find the temperature of the body after 40 min.

b Solve $(D^2 + a^2)y = \tan ax$ by the method of variation of parameters.

6 M

6 M

UNIT-II

3 a If $u = x^2 - y^2$, v = 2xy where $x = r\cos\theta$, $y = r\sin\theta$ then show that $\frac{\partial(u, v)}{\partial(r, \theta)} = 4r^3.$

b Find the radius of curvature of the curve $x^2y = a(x^2 + y^2)$ at (-2a, 2a).

6 M

OR

4 a Show that $\sin^{-1} x = x + \frac{x^3}{3!} + \frac{1^2 \cdot 3^2}{5!} x^5 + \frac{1^2 \cdot 3^2 \cdot 5^2}{7!} x^7 + \dots$

6 M

b Find the minimum value of $x^2 + y^2 + z^2$ given x + y + z = 3a.

6 M

UNIT-III

5 **a** Evaluate $\iint r \sin \theta \ dr \ d\theta$ over the cardioids $r = a(1 + \cos \theta)$ above the initial line. 6 M

b Show that the double integration, the area between the parabolas $y^2 = 4ax$ and

6 M

 $x^2 = 4ay$ is $\frac{16}{3}a^2$.

OR

6 **a** Evaluate the integral $\int_{0}^{1} \int_{x}^{\sqrt{x}} (x^2 + y^2) dx dy$.

5 M

b Evaluate the integral by changing the order of integration $\int_{0}^{1} \int_{x^{2}}^{2-x} x y \, dy \, dx$.

7 M

Q.P. Code: 16HS602

R16

UNIT-IV

7 **a** Find the Laplace transform of $f(t) = 2 \cosh at \cdot \sin bt$.

6 M

b Find Laplace Transform of Square-wave function of periodic 2a, defined as

6 M

$$f(t) = \begin{cases} k, & 0 < t < a \\ -k, & a < t < 2a \end{cases}.$$

OR

8 a Find the Laplace transform of $f(t) = 3 \cos 3t \cdot \cos 4t$.

6 M

b Evaluate $\int_{0}^{\infty} \frac{\cos at - \sin at}{t} dt$ by using Laplace transform method.

6 M

UNIT-V

9 **a** Find $L^{-1} \left[\frac{3s-2}{s^2-4s+20} \right]$ by using first shifting theorem.

6 M

b Find $L^{-1} \left[\frac{1}{2} \log \left(\frac{s^2 + b^2}{s^2 + a^2} \right) \right]$

6 M

OR

10 Using Laplace Transform method, solve $y'' - 3y' + 2y = 4t + 3e^{3t}$ where y(0) = 1, 12 M y(0) = 1

*** END ***